Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

STK-12 acts as a transcriptional brake to control the expression of cellulase-encoding genes in Neurospora crassa.

Identifieur interne : 000242 ( Main/Exploration ); précédent : 000241; suivant : 000243

STK-12 acts as a transcriptional brake to control the expression of cellulase-encoding genes in Neurospora crassa.

Auteurs : Liangcai Lin [République populaire de Chine] ; Shanshan Wang [République populaire de Chine] ; Xiaolin Li [République populaire de Chine] ; Qun He [République populaire de Chine] ; J Philipp Benz [Allemagne] ; Chaoguang Tian [République populaire de Chine]

Source :

RBID : pubmed:31765390

Descripteurs français

English descriptors

Abstract

Cellulolytic fungi have evolved a complex regulatory network to maintain the precise balance of nutrients required for growth and hydrolytic enzyme production. When fungi are exposed to cellulose, the transcript levels of cellulase genes rapidly increase and then decline. However, the mechanisms underlying this bell-shaped expression pattern are unclear. We systematically screened a protein kinase deletion set in the filamentous fungus Neurospora crassa to search for mutants exhibiting aberrant expression patterns of cellulase genes. We observed that the loss of stk-12 (NCU07378) caused a dramatic increase in cellulase production and an extended period of high transcript abundance of major cellulase genes. These results suggested that stk-12 plays a critical role as a brake to turn down the transcription of cellulase genes to repress the overexpression of hydrolytic enzymes and prevent energy wastage. Transcriptional profiling analyses revealed that cellulase gene expression levels were maintained at high levels for 56 h in the Δstk-12 mutant, compared to only 8 h in the wild-type (WT) strain. After growth on cellulose for 3 days, the transcript levels of cellulase genes in the Δstk-12 mutant were 3.3-fold over WT, and clr-2 (encoding a transcriptional activator) was up-regulated in Δstk-12 while res-1 and rca-1 (encoding two cellulase repressors) were down-regulated. Consequently, total cellulase production in the Δstk-12 mutant was 7-fold higher than in the WT. These results strongly suggest that stk-12 deletion results in dysregulation of the cellulase expression machinery. Further analyses showed that STK-12 directly targets IGO-1 to regulate cellulase production. The TORC1 pathway promoted cellulase production, at least partly, by inhibiting STK-12 function, and STK-12 and CRE-1 functioned in parallel pathways to repress cellulase gene expression. Our results clarify how cellulase genes are repressed at the transcriptional level during cellulose induction, and highlight a new strategy to improve industrial fungal strains.

DOI: 10.1371/journal.pgen.1008510
PubMed: 31765390
PubMed Central: PMC6901240


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">STK-12 acts as a transcriptional brake to control the expression of cellulase-encoding genes in Neurospora crassa.</title>
<author>
<name sortKey="Lin, Liangcai" sort="Lin, Liangcai" uniqKey="Lin L" first="Liangcai" last="Lin">Liangcai Lin</name>
<affiliation wicri:level="3">
<nlm:affiliation>Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin</wicri:regionArea>
<placeName>
<settlement type="city">Tianjin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Shanshan" sort="Wang, Shanshan" uniqKey="Wang S" first="Shanshan" last="Wang">Shanshan Wang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin</wicri:regionArea>
<placeName>
<settlement type="city">Tianjin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Xiaolin" sort="Li, Xiaolin" uniqKey="Li X" first="Xiaolin" last="Li">Xiaolin Li</name>
<affiliation wicri:level="3">
<nlm:affiliation>Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin</wicri:regionArea>
<placeName>
<settlement type="city">Tianjin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="He, Qun" sort="He, Qun" uniqKey="He Q" first="Qun" last="He">Qun He</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Benz, J Philipp" sort="Benz, J Philipp" uniqKey="Benz J" first="J Philipp" last="Benz">J Philipp Benz</name>
<affiliation wicri:level="4">
<nlm:affiliation>Technical University of Munich, TUM School of Life Sciences Weihenstephan, Hans-Carl-von-Carlowitz-Platz, Freising, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Technical University of Munich, TUM School of Life Sciences Weihenstephan, Hans-Carl-von-Carlowitz-Platz, Freising</wicri:regionArea>
<wicri:noRegion>Freising</wicri:noRegion>
<orgName type="university">Université Louis-et-Maximilien de Munich</orgName>
<placeName>
<settlement type="city">Munich</settlement>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Technical University of Munich, Institute for Advanced Study, Lichtenbergstr, Garching, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Technical University of Munich, Institute for Advanced Study, Lichtenbergstr, Garching</wicri:regionArea>
<wicri:noRegion>Garching</wicri:noRegion>
<orgName type="university">Université Louis-et-Maximilien de Munich</orgName>
<placeName>
<settlement type="city">Munich</settlement>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tian, Chaoguang" sort="Tian, Chaoguang" uniqKey="Tian C" first="Chaoguang" last="Tian">Chaoguang Tian</name>
<affiliation wicri:level="3">
<nlm:affiliation>Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin</wicri:regionArea>
<placeName>
<settlement type="city">Tianjin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31765390</idno>
<idno type="pmid">31765390</idno>
<idno type="doi">10.1371/journal.pgen.1008510</idno>
<idno type="pmc">PMC6901240</idno>
<idno type="wicri:Area/Main/Corpus">000155</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000155</idno>
<idno type="wicri:Area/Main/Curation">000155</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000155</idno>
<idno type="wicri:Area/Main/Exploration">000155</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">STK-12 acts as a transcriptional brake to control the expression of cellulase-encoding genes in Neurospora crassa.</title>
<author>
<name sortKey="Lin, Liangcai" sort="Lin, Liangcai" uniqKey="Lin L" first="Liangcai" last="Lin">Liangcai Lin</name>
<affiliation wicri:level="3">
<nlm:affiliation>Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin</wicri:regionArea>
<placeName>
<settlement type="city">Tianjin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Shanshan" sort="Wang, Shanshan" uniqKey="Wang S" first="Shanshan" last="Wang">Shanshan Wang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin</wicri:regionArea>
<placeName>
<settlement type="city">Tianjin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Xiaolin" sort="Li, Xiaolin" uniqKey="Li X" first="Xiaolin" last="Li">Xiaolin Li</name>
<affiliation wicri:level="3">
<nlm:affiliation>Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin</wicri:regionArea>
<placeName>
<settlement type="city">Tianjin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="He, Qun" sort="He, Qun" uniqKey="He Q" first="Qun" last="He">Qun He</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Benz, J Philipp" sort="Benz, J Philipp" uniqKey="Benz J" first="J Philipp" last="Benz">J Philipp Benz</name>
<affiliation wicri:level="4">
<nlm:affiliation>Technical University of Munich, TUM School of Life Sciences Weihenstephan, Hans-Carl-von-Carlowitz-Platz, Freising, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Technical University of Munich, TUM School of Life Sciences Weihenstephan, Hans-Carl-von-Carlowitz-Platz, Freising</wicri:regionArea>
<wicri:noRegion>Freising</wicri:noRegion>
<orgName type="university">Université Louis-et-Maximilien de Munich</orgName>
<placeName>
<settlement type="city">Munich</settlement>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Technical University of Munich, Institute for Advanced Study, Lichtenbergstr, Garching, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Technical University of Munich, Institute for Advanced Study, Lichtenbergstr, Garching</wicri:regionArea>
<wicri:noRegion>Garching</wicri:noRegion>
<orgName type="university">Université Louis-et-Maximilien de Munich</orgName>
<placeName>
<settlement type="city">Munich</settlement>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tian, Chaoguang" sort="Tian, Chaoguang" uniqKey="Tian C" first="Chaoguang" last="Tian">Chaoguang Tian</name>
<affiliation wicri:level="3">
<nlm:affiliation>Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin</wicri:regionArea>
<placeName>
<settlement type="city">Tianjin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS genetics</title>
<idno type="eISSN">1553-7404</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cellulase (genetics)</term>
<term>Cellulose (genetics)</term>
<term>Fungal Proteins (genetics)</term>
<term>Gene Expression Regulation, Fungal (genetics)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (genetics)</term>
<term>Neurospora crassa (enzymology)</term>
<term>Neurospora crassa (genetics)</term>
<term>Transcription Factors (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cellulase (génétique)</term>
<term>Cellulose (génétique)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (génétique)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Neurospora crassa (enzymologie)</term>
<term>Neurospora crassa (génétique)</term>
<term>Protéines fongiques (génétique)</term>
<term>Régulation de l'expression des gènes fongiques (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cellulase</term>
<term>Cellulose</term>
<term>Fungal Proteins</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Neurospora crassa</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Neurospora crassa</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
<term>Neurospora crassa</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Cellulase</term>
<term>Cellulose</term>
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Facteurs de transcription</term>
<term>Neurospora crassa</term>
<term>Protéines fongiques</term>
<term>Régulation de l'expression des gènes fongiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cellulolytic fungi have evolved a complex regulatory network to maintain the precise balance of nutrients required for growth and hydrolytic enzyme production. When fungi are exposed to cellulose, the transcript levels of cellulase genes rapidly increase and then decline. However, the mechanisms underlying this bell-shaped expression pattern are unclear. We systematically screened a protein kinase deletion set in the filamentous fungus Neurospora crassa to search for mutants exhibiting aberrant expression patterns of cellulase genes. We observed that the loss of stk-12 (NCU07378) caused a dramatic increase in cellulase production and an extended period of high transcript abundance of major cellulase genes. These results suggested that stk-12 plays a critical role as a brake to turn down the transcription of cellulase genes to repress the overexpression of hydrolytic enzymes and prevent energy wastage. Transcriptional profiling analyses revealed that cellulase gene expression levels were maintained at high levels for 56 h in the Δstk-12 mutant, compared to only 8 h in the wild-type (WT) strain. After growth on cellulose for 3 days, the transcript levels of cellulase genes in the Δstk-12 mutant were 3.3-fold over WT, and clr-2 (encoding a transcriptional activator) was up-regulated in Δstk-12 while res-1 and rca-1 (encoding two cellulase repressors) were down-regulated. Consequently, total cellulase production in the Δstk-12 mutant was 7-fold higher than in the WT. These results strongly suggest that stk-12 deletion results in dysregulation of the cellulase expression machinery. Further analyses showed that STK-12 directly targets IGO-1 to regulate cellulase production. The TORC1 pathway promoted cellulase production, at least partly, by inhibiting STK-12 function, and STK-12 and CRE-1 functioned in parallel pathways to repress cellulase gene expression. Our results clarify how cellulase genes are repressed at the transcriptional level during cellulose induction, and highlight a new strategy to improve industrial fungal strains.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31765390</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>02</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7404</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2019</Year>
<Month>11</Month>
</PubDate>
</JournalIssue>
<Title>PLoS genetics</Title>
<ISOAbbreviation>PLoS Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>STK-12 acts as a transcriptional brake to control the expression of cellulase-encoding genes in Neurospora crassa.</ArticleTitle>
<Pagination>
<MedlinePgn>e1008510</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pgen.1008510</ELocationID>
<Abstract>
<AbstractText>Cellulolytic fungi have evolved a complex regulatory network to maintain the precise balance of nutrients required for growth and hydrolytic enzyme production. When fungi are exposed to cellulose, the transcript levels of cellulase genes rapidly increase and then decline. However, the mechanisms underlying this bell-shaped expression pattern are unclear. We systematically screened a protein kinase deletion set in the filamentous fungus Neurospora crassa to search for mutants exhibiting aberrant expression patterns of cellulase genes. We observed that the loss of stk-12 (NCU07378) caused a dramatic increase in cellulase production and an extended period of high transcript abundance of major cellulase genes. These results suggested that stk-12 plays a critical role as a brake to turn down the transcription of cellulase genes to repress the overexpression of hydrolytic enzymes and prevent energy wastage. Transcriptional profiling analyses revealed that cellulase gene expression levels were maintained at high levels for 56 h in the Δstk-12 mutant, compared to only 8 h in the wild-type (WT) strain. After growth on cellulose for 3 days, the transcript levels of cellulase genes in the Δstk-12 mutant were 3.3-fold over WT, and clr-2 (encoding a transcriptional activator) was up-regulated in Δstk-12 while res-1 and rca-1 (encoding two cellulase repressors) were down-regulated. Consequently, total cellulase production in the Δstk-12 mutant was 7-fold higher than in the WT. These results strongly suggest that stk-12 deletion results in dysregulation of the cellulase expression machinery. Further analyses showed that STK-12 directly targets IGO-1 to regulate cellulase production. The TORC1 pathway promoted cellulase production, at least partly, by inhibiting STK-12 function, and STK-12 and CRE-1 functioned in parallel pathways to repress cellulase gene expression. Our results clarify how cellulase genes are repressed at the transcriptional level during cellulose induction, and highlight a new strategy to improve industrial fungal strains.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Liangcai</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">0000-0003-0645-1446</Identifier>
<AffiliationInfo>
<Affiliation>Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Shanshan</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Xiaolin</ForeName>
<Initials>X</Initials>
<Identifier Source="ORCID">0000-0002-2440-8356</Identifier>
<AffiliationInfo>
<Affiliation>Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Qun</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Benz</LastName>
<ForeName>J Philipp</ForeName>
<Initials>JP</Initials>
<Identifier Source="ORCID">0000-0001-5361-4514</Identifier>
<AffiliationInfo>
<Affiliation>Technical University of Munich, TUM School of Life Sciences Weihenstephan, Hans-Carl-von-Carlowitz-Platz, Freising, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Technical University of Munich, Institute for Advanced Study, Lichtenbergstr, Garching, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tian</LastName>
<ForeName>Chaoguang</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>11</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Genet</MedlineTA>
<NlmUniqueID>101239074</NlmUniqueID>
<ISSNLinking>1553-7390</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9004-34-6</RegistryNumber>
<NameOfSubstance UI="D002482">Cellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.4</RegistryNumber>
<NameOfSubstance UI="D002480">Cellulase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002480" MajorTopicYN="N">Cellulase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002482" MajorTopicYN="N">Cellulose</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009492" MajorTopicYN="N">Neurospora crassa</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>11</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>12</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>11</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>11</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31765390</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pgen.1008510</ArticleId>
<ArticleId IdType="pii">PGENETICS-D-19-01211</ArticleId>
<ArticleId IdType="pmc">PMC6901240</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Cell. 2003 Dec;12(6):1607-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14690612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2013 May 02;6(1):62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23638967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2011 Dec;21(12):2213-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21903743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2005 Apr;17(2):197-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15780597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Nov 15;288(46):32861-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24085297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2016 Sep;80(9):1712-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27075508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2018 Dec 13;85(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30341081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Apr 26;277(17):14688-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11850429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Aug 26;8(8):e72189</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23991059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 May;1843(5):1020-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24487068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(9):e25654</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21980519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(12):e28984</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22194968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1998 Sep 15;12(18):2943-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9744870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2017 Jun;81(6):1061-1068</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28485209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2014 Jan 28;7(1):14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24472375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2015 Apr 14;8:66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25883682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2019 Feb;111(2):373-394</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30474279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2012 Apr;78(7):2168-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22286997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2014 Dec 15;464(3):323-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25253091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2004 Oct;41(10):897-910</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15341912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2007 Jan;5(1):57-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17170747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2018 Apr 4;11:97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29636818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2015 Oct;37(10):2055-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26112324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Oct 1;330(6000):84-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20829451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Jan 31;289(5):2610-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24344125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Dec;7(12):e1002460</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22216007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2015 Dec 18;8:213</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26690721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 May 8;109(19):7397-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22532664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011 Jun 06;12:293</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21645359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2010 May 14;38(3):345-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20471941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2015 Aug 20;8:124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26300971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2011 Nov;10(11):1553-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21965514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2018;14(9):1543-1561</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29929416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2014 Oct 23;4:6732</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25339247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2004 Sep;53(6):1731-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15341651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2017 Nov;30(11):886-895</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28800710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Sep 10;6:8256</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26356805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2008 Oct;54(4):185-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18726099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10352-10357</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16801547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8839-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12847291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci Bioeng. 2016 Apr;121(4):365-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26467693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2013 May;59(1-2):33-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23269362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2013 Jan 31;3(1):16-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23273919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2018 Sep 12;14(9):e1007570</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30208021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Aug 21;10(8):e1004500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25144221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Jul;5(7):621-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18516045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2010 Dec;10(12):826-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21088683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2017 Jan 19;10:17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28115989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2008 Jan;4(1):e13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18225956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2013 Jun 25;6(1):91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23800192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2017 Apr 20;10:99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28435444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Nov 7;278(45):45011-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12941955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2013 Apr 25;14(4):R36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23618408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2015 Jun;14(6):602-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25888553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biotechnol. 2015 May 27;15:35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26013561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2008 May;26(5):553-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18454138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2078-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2013 Nov 15;587(22):3648-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24140345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2014 Feb 28;7(1):31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24581151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Jun 16;165(7):1672-1685</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27315481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Feb 1;31(3):445-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25294921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell Fact. 2018 Jun 16;17(1):96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29908565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Apr 24;422(6934):859-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12712197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2019 Nov 01;10:2317</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31736884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol. 2015 Apr;53(4):236-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25636423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2014 Nov;72:21-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24881580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(3):e58008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23505451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22157-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20018766</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>République populaire de Chine</li>
</country>
<region>
<li>Bavière</li>
<li>District de Haute-Bavière</li>
</region>
<settlement>
<li>Munich</li>
<li>Pékin</li>
<li>Tianjin</li>
</settlement>
<orgName>
<li>Université Louis-et-Maximilien de Munich</li>
</orgName>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Lin, Liangcai" sort="Lin, Liangcai" uniqKey="Lin L" first="Liangcai" last="Lin">Liangcai Lin</name>
</noRegion>
<name sortKey="He, Qun" sort="He, Qun" uniqKey="He Q" first="Qun" last="He">Qun He</name>
<name sortKey="Li, Xiaolin" sort="Li, Xiaolin" uniqKey="Li X" first="Xiaolin" last="Li">Xiaolin Li</name>
<name sortKey="Li, Xiaolin" sort="Li, Xiaolin" uniqKey="Li X" first="Xiaolin" last="Li">Xiaolin Li</name>
<name sortKey="Tian, Chaoguang" sort="Tian, Chaoguang" uniqKey="Tian C" first="Chaoguang" last="Tian">Chaoguang Tian</name>
<name sortKey="Wang, Shanshan" sort="Wang, Shanshan" uniqKey="Wang S" first="Shanshan" last="Wang">Shanshan Wang</name>
</country>
<country name="Allemagne">
<region name="Bavière">
<name sortKey="Benz, J Philipp" sort="Benz, J Philipp" uniqKey="Benz J" first="J Philipp" last="Benz">J Philipp Benz</name>
</region>
<name sortKey="Benz, J Philipp" sort="Benz, J Philipp" uniqKey="Benz J" first="J Philipp" last="Benz">J Philipp Benz</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000242 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000242 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31765390
   |texte=   STK-12 acts as a transcriptional brake to control the expression of cellulase-encoding genes in Neurospora crassa.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31765390" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020